
1

Assembling Objects With a Robotic Arm and
Supports

Daniel Cabrini Hauagge
dc579

Abstract—In this work I investigate the problem of assembling
pairs of objects using a robotic arm and obstacles as a support.
The problem is decomposed into a sequence of grasping problems
that take the objects from a random position into their fully
assembled configuration using an obstacle as a support to hold
one of the objects while the robotic hand moves the other object
into it’s final position. To determine what is a good grasp of
the assembly I use SVM and hand labeled examples. I simplify
the problem by assuming that the objects can be approximated
as 2D objects. I show simulated results of final assemblies that
demonstrate the viability of my approach.

I. INTRODUCTION

ALTHOUGH robots have been used in assembly lines for
decades, the environment in which they operate is highly

structured and the tasks are fixed, so a hard coded sequence
of movements can be successfully employed. As robots move
into homes and start to interact with unstructured enviroments
one of their tasks will be to assemble daily objects (e.g. while
cleaning up a desk a robot might need to put the cap onto a
pen or put papers into a file cabinet). The task in challenging at
many levels, a robot will need to be able to identify a class of
objects (e.g. plates, cups, chairs), reason about how they should
be located inside the house, and be able to manipulate them
successfully. In this work I address the problem of assembling
pairs of objects, one novelty of this work is the use of the
environment to assist in the assembly process.

II. PREVIOUS WORK

The work done by [1] addresses the problem of learning
the relation between the components of an object (e.g. on
a microwave oven how the door moves with relation to
the microwave or a drawer comes out of a cabinet). They
formulate the problem as that of finding a minimum spanning
tree in a graph, where the vertices are the components of the
object and the edges model how one component moves with
respect to the other. The cost of each edge (there are multiple
edges linking the same vertices) models the complexity of
the joint (higher cost for higher complexity) and how well
the model can explain observations. In [2] another aspect of
the problem is studied, that of devising strategies that allow a
robot to dermine the different moving parts of an object. The
problem is formulated as an instance of policy learning, where
higher rewards are given to actions that allow the robot to gain
the largest amount of information (measured in the number of
degrees of freedom that can be discovered).

Figure 1: Setup used for this project. An AX12 robotic arm
and a webcam.

III. SETUP

For this project I employ an AX12 robotic arm and a
webcam capturing color images at a resolution of 1280× 800
pixels (see Figure 1). All the code was written in C++ using
ROS and OpenCV. I used SVMlight for grasp rating. I included
code for background subtraction that I’ve written for my M.Sc.
project (this code is under the thirdparty directory inside
applications/demo_ax12_assembly).

A. Calibration

As we assume that objects lye on a plane our calibration
is greatly simplified. We need to know how to map points on
the plane where the objects lye to points in the image. We
can compute this correspondance with bilinear interpolation
with four pairs of points (pi, xi), where pi ∈ R2 is a point
in the image and xi ∈ R3 is the corresponding point in
cartesian coords in the arm reference frame. Given a new
point p in image coordinates we can estimate α and β such
that p = α(βp1 + (1 − β)p2) + (α − 1)(βp3 + (1 − β)p4)
by solving a quadratic equation. Once α and β have been
estimated we can obtain the corresponding point in cartesian



2

coordintes by applying the same interpolation, now with the
xi’s x = α(βx1 + (1− β)x2) + (α− 1)(βx3 + (1− β)x4).

IV. ALGORITHMS

Given an image I , the goal of our algorithm is to determine
e sequence of pairs (pi1, pi2), where pi1, pi2 ∈ R3 represent
the coordinates of the fingers of the robotic arm, that bring
the objects into their assembled configuration. We restrict
our problem to objects that lie on a plane, this simplifies
calibration of the arm with respect to the camera (as was
described in III-A), dispenses the use of sensors that capture
3D data, and allows us to reason about contacts between
objects in terms of their contours. The overall pipeline can
be seen in Figure 2, in the following subsections we go over
each of the stages in more detail.

A. Background subtraction

We assume that the background is of flat color, to remove
it from the image we collect a set of images Bi and masks
Mi that indicate where the background is (the green sheet in
Figure 1 does not fill the camera’s field of view, hence the
need for a mask). We then compute a 3D histogram (one
dimension for each color component) of the pixels in Bi

indicated by Mi. We then fit a gaussian distribution to the 3D
histogram H and replace the values in it’s bins with value of
the gaussian. To remove the background form a new image we
lookup the value store in H for the color of the corresponding
pixel, if it is greater that than a certain value we declare the
pixel to correspond to foreground. The result of background
subtraction can be seen in Figure 3.

(a) Original image. (b) Result after subtracting the back-
ground.

Figure 3: Result of background subtraction.

As constrained as this setup might seem, we beleive that
with the use of a 3D sensor we could substitute the constant
color assumption with the assumption that objects are lying
on a plane.

B. Connected component extraction

After subtracting the background from the image we detect
the connected in the mask that was produced and filter out
components that are too small or too big. Here we assume
that in their initial configuration the objects are not touching
each other, otherwise their connected components would be
merged.

C. Pairing of objects and determination of desired final con-
figuration

The next step in the pipeline is determining which objects
go together and what should be their final configuration. This
step currently requires human intervention. For pairing the
objects the user clicks on the two connected components that
should go together. To specify the final configuration the user
clicks on two pairs of points, where each pair has one point
in each of the two contours, each pair indicating that the
corresponding points overlap in the final configuration. The
connected component corresponding to the support is indicated
previously and supplied to the system during initialization.

D. Recursive grasp planning

For this stage of the algorithm the contours of the connected
components are extracted and the normal to each point is
obtained by computing the gradient on the original mask
and annotating the corresponding point with that information.
The algorithm will determine if objects intersect each other
by applying the transforms to the points on the contour and
verifying if intersections between the contours occurr.

Once we know what is the desired final configuration
of the parts we can reformulate the problem as a grasping
problem (where a sequence of grasps might be needed) with 3
contact points, two representing the arm fingers and the third
representing the obstacle which will be used as a support.
First our algorithm moves one of the objects so that the
final configuration is achieved, if there are no intersections
between objects and obstacles then we proceed (we allow for
intersections between objects to allow, for instance, the tip of
the pen to be inside the cap when the cap is on), if there
are intersections then we backtrack and start by moving the
other object, if both attempts fail then the assembly fails1.
The next step is to find the best graps for the assembled
object, one constraint here that is not common to grasping
problems is that the two arm fingers must be on one of
the objects and the obstacle contact point must be on the
other. The algorithms goes over all possible grasps and ranks
them. Given the best grasp the next step is to determine if
the grasp is viable. A grasp is viable if the obstacle contact
point touches is in contact with the obstacle. If the grasp is
viable then we can execute the grasp by moving the object
that is in contact with the fingers towads the object that is in
contact with the obstacle. If a grasp is viable the algorithm first
tries to move the object in contact with the obstacle so that
they are touching, this is done with a recursive call, where
the desired final configuration now is that which puts the
obstale and the object that should touch the obstacle in contact
(with the constraint that the obstacle, while being viewd as
another object, still cannot be moved). If the recursive call is
successful, then we can move the object held by the fingers
towards the object touching the obstacle so that we achieve
the final configuration. If the recursive call is not successfull,
then we try the next best grasp and so on. A diagram of an
execution of the algorithm can be seen in Figure IV-D.

1There is obvious room for improvement here, we could move both objects
away from the obstacle so there is room to assemble them.



3

Original Image After Background Subtraction Connected Components Grasping Sequence Final Configuration

Figure 2: Full pipeline.

E. Learning to determine best grasping points

The algorithm described in IV-D goes over all possible 3-
contact grasps that have one contact point in one of the con-
nected components and the other two on the other connected
component. To determine which are the best candidate grasps
we use SVM to classify grasps into bad and good. The labeling
is done manually and consists of clicking on 3 points around
an object and labeling the grasp as good or bad (see Figure
5 for examples). The feature vector on which the model is
trained encodes information about the contact points and their
relation with each other, the components of the feature vectors
are

ni · nj ∀i, j ∈ {1, 2, 3} (1)

(pi − pj) · ni
‖pi − pj‖

∀i ∈ {1, 2, 3} (2)

(c− pi) · ni
‖c− pi‖

∀i, j ∈ {1, 2, 3} (3)

where ni and pi are the normal and location of the contour
point i and c = (p1 + p2 + p3)/3 is the centroid of the points
(see Fig. 6). Eq. (1) encodes information about the angle
between the pairs of normals, Eq. (2) encodes information
how well aligned the points are, and Eq. (3) tells if a point’s
normal is pointing towards or away from the centroid. In total
we have 9 components in the feature vector.

V. RESULTS

For grasp selection I ran a test on a set of 36 images
containing three different objects (a cap, a pen, and a screw-
driver) and hand labeled 5 positive examples and 5 negative
examples for a total of 360 labels. In a 10-fold cross validation
the average acuracy was 89.17% with a standard deviation of
4.43%, the average recall was 89.45% with standard deviation
of 7.0% and the average precision was 88.92% with a standard
deviation of 6.63%.

An example of a successfull grasping sequence can be seen
in Figure 7.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have examined the problem of assembling
two objects using one arm and an obstacle as a support.
We were able to reformulate the problem as a sequence of
grasping problems and simulate successfully grasps with the
algorithm. As future improvements to the system we would
like to eliminate the need for human intervention when pairing
the objects, a challenging problem since we need to identify
generic instances of objects and be able to reason about how
they relate spatially with each other. There is also room for

improvement in the features used to learn good grasps. Due
to noise in the contours we obtain very noisy estimates of
the normals, which corrupt the feature vectors. To overcome
this problem we would like to devise feature vectors that
incorporate statistics such as averages and variance for the
points. Another direction of investigation is to allow for a
flexible number of contact points, right now we allow for only
three and go over all possible grasps to search for the best
one. This is obviously not a scalable strategy, as the number
of contact points grows then number of possible grasps grows
exponentially. Yet another extension to investigate would be
to extend the algorithm to work for 3D data, which would
require more sophisticated sensing.

ADDITIONAL WORK

I’ve committed code to the ROS repository into various
modules.

• applications/demo_ax12_assembly
Most of the code for my final project is contained in here,
some of which might be useful to other projects, like
the background subtraction code (OpenCV has a class
for background subtraction but the problem that I found
was that it continuously updates the model, so station-
ary objects will eventually be considered background),
there’s a class for background subtraction that can save
it’s state to file for later use and there’s also a utility
(configBSROS) to configure an instance of this class
and then save the state to file.

• control/ax12grasping
Contains the camera to arm calibration (for the 2D case).

• applications/demo_ax12_camera
Utility that displays the stream coming from a camera
(obtained from a topic published by the Brown University
module probe) and publishes user clicked points (number
of points published in each message is configurable) to a
ROS topic, useful for debugging and prototyping.

• export_packages
A script to take the packages listed in the file
export_list.txt and upload them to the Google
code repository.

REFERENCES

[1] J. Sturm, C. Stachniss, V. Pradeep, C. Plagemann, K. Konolige, and
W. Burgard, “Towards Understanding Articulated Objects,”

[2] O. B. Dov Katz, Yuri Pyuro, “Learning to manipulate articulated objects
in unstructured environments using a grounded relational representation,”
in Proceedings of Robotics: Science and Systems IV, (Zurich, Switzer-
land), June 2008.



4

Pen
Cap

Support

Desired Final
Configuration

Desired Final
Configuration

Desired Final
Configuration

Desired Final
Configuration

Identify objects that go together.

Determine the desired final 
configuration

Find the best grasp for the final 
configuration

Grasp viable?

We’re done! Execute 
the grasp sequence.

NO
Recursive call, assemble one 

of the objects + support

We’re done! Execute 
the grasp sequence. Grasp viable?

NO

YES

Backtrack and try the next 
best grasp.

Find the best grasp for the final 
configuration

YES

Figure 4: Diagram of the execution of the recursive grasp
planning.

+

−

−
Figure 5: Examples of good and bad grasps.

n3
n1

n2p1

p2

p3

c

Figure 6: Example of grasp and variables used to compute
feature vector.

(a) Grasping sequence. (b) Final configuration.

Figure 7: Example of successful grasping sequence.


